Advances in Energy Storage Technologies

Sirivatch Shimpalee, Ph.D.

Hydrogen and Fuel-Cell Center

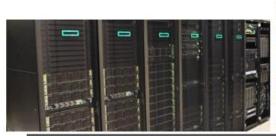
Department of Chemical Engineering

College of Engineering and Computing
University of South Carolina, Columbia, SC. USA

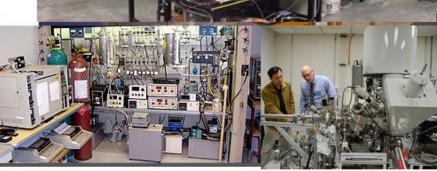
Contents

- About Hydrogen and Fuel-Cell Center
- Current Important Research Activities
- Energy Storage Technologies in the US (US Department of Energy)
- Summary

UNIVERSITY OF SOUTH CAROLINA


Catalysis, Electrochemical and Characterization Facilities

Electrochemical Cells design and testing

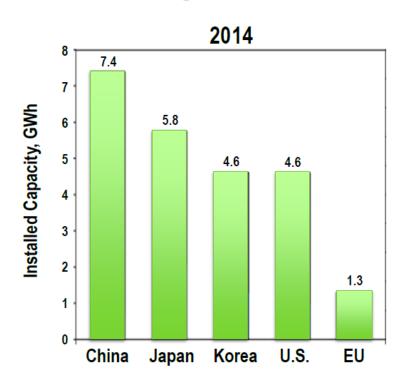

Energy storage materials and systems

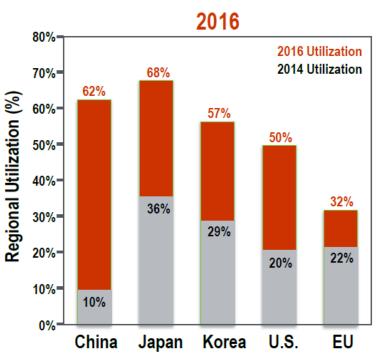
Catalyst Development for Energy Production

System integration

Contents

- About Hydrogen and Fuel-Cell Center
- Energy Storage Technologies in the US (US Department of Energy)
- Selected Research Activities at USC


Energy Storage Technologies


technology	typical power (MW)	discharge time	storage capacity cost (\$/kWh)	life time (cycle/years)	efficiency (%)	drawbacks
supercapacitors	0.25	<1 min	500-3000	500000/20	>90	explosion hazard, low energy density, cost
regenerative fuel cells with hydrogen storage	10 ^a	>5 h		13	40-50	low-density storage, high cost, safety
lead-acid batteries	0.5-20	3-5 h	65-120	1000-1200/3-4	70-80	low energy density, short lifetime, temperature sensitive
Li-ion batteries		1-5 h	400-600	750-3000/6-8	80-90	cost, safety, short lifetime, self-discharge, temperature sensitive
NAS battery	0.25 - 1	6-8 h	360-500	2500-4500/6-12	87	cost, high-temperature operation, safety
flow battery (VRB)	0.5-12	10 h	150-2500	500-2000/10	70	low energy density
^a Projected.						

Energy Storage Technologies

- Electrochemical Energy Storage
 - -Battery
 - -Flow Battery
- Solar Thermal Energy Storage

Regional Automotive LIB Cell Capacity and Utilization

- Automotive lithium-ion battery demand growing but short of global manufacturing capacity.
- Utilization of U.S. plants increased from 20% in 2014 to ~50% in 2016.
- Forecasted compound annual growth rates in lithium-ion demand: 22%–41% (through 2020).

Mission, Goals & Budget

Mission

Enable a large market penetration of electric drive vehicles through innovative battery research and development.

Goal

Research new battery chemistry and cell technologies that can reduce the cost of electric vehicle batteries to less than \$100/kWh, increase range to 300 miles and decrease charge time to 15 minutes or less. Ultimate goal is \$80/kWh.

Budget

Funding in millions	FY 2016 Enacted	FY 2017 Enacted
Battery Technology R&D	\$103.0	\$101.2

SOUTH CAROLINA

Current Technology Lithium-ion

Graphite/NMC

Battery Pack Cost

Current: \$235/kWh

• Potential: \$100-160/kWh

Large format EV cells	20-60 Ah
Current Cycle life	1000-5000
Calendar life	10-15 yrs
Mature manufacturing	
Fast Charge	

R&D Needs

- High Voltage Cathode/Electrolyte
- Lower Cost Electrode Processing Technology
- · Extreme Fast Charging

Current Technology Lithium-ion

Graphite/NMC

Battery Pack Cost

Current: \$235/kWh

Potential: \$100-160/kWh

Large format EV cells	20-60 Ah		
Current Cycle life	1000-5000		
Calendar life	10-15 yrs		
Mature manufacturing			
Fast Charge			

R&D Needs

- High Voltage Cathode/Electrolyte
- Lower Cost Electrode Processing Technology
- · Extreme Fast Charging

Next Generation Lithium-ion

Silicon Composite/High Voltage NMC

Battery Pack Cost

Current: \$256/kWh

Potential: \$90-125/kWh

Large format EV cells	20-60 Ah
Current Cycle life	500-700
Calendar life	Low
Mature manufacturing	
Fast Charge	

R&D Needs

- High Voltage Cathode/Electrolyte
- Lower Cost Electrode Processing
- Durable Silicon Anode with increase silicon content

Current Technology Lithium-ion

Graphite/NMC

Battery Pack Cost

Current: \$235/kWh

Potential: \$100-160/kWh

Large format EV cells	20-60 Ah
Current Cycle life	1000-5000
Calendar life	10-15 yrs
Mature manufacturing	
Fast Charge	

R&D Needs

- High Voltage Cathode/Electrolyte
- Lower Cost Electrode Processing Technology
- · Extreme Fast Charging

Next Generation Lithium-ion

Silicon Composite/High Voltage NMC

Battery Pack Cost

Current: \$256/kWh

Potential: \$90-125/kWh

Large format EV cells	20-60 Ah
Current Cycle life	500-700
Calendar life	Low
Mature manufacturing	
Fast Charge	

R&D Needs

- High Voltage Cathode/Electrolyte
- Lower Cost Electrode Processing
- Durable Silicon Anode with increase silicon content

Longer Term Battery Technology

Lithium Metal

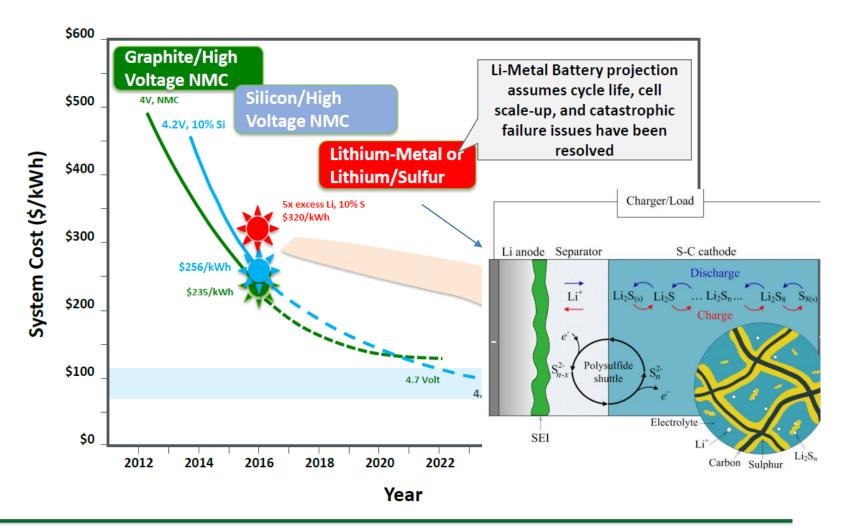
Battery Pack Cost

Current: ~\$320/KWh

Potential: \$70-120/kWh

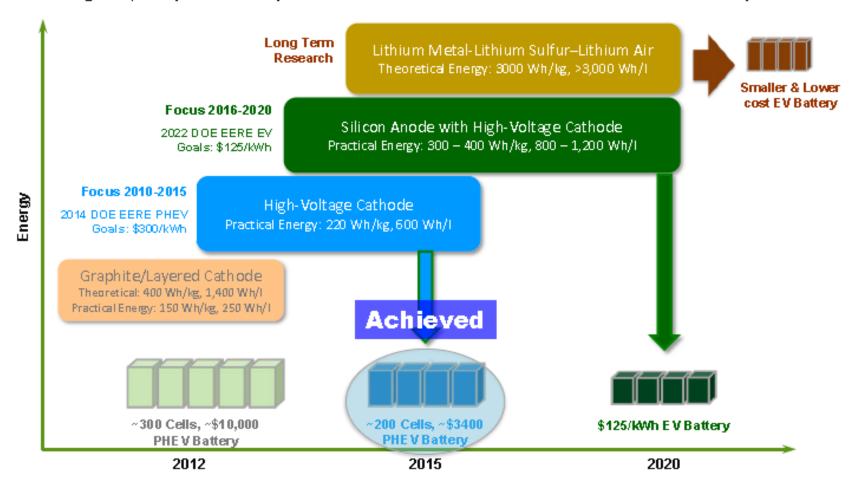
Large format EV cells	
Current Cycle life	50-100
Calendar life	TBD
Mature manufacturing	
Fast Charge	

R&D Needs


- High Voltage Cathode
- Lithium Protection
- High Conductive Solid Electrolyte

Cost Trends for Lithium-based EV Batteries

Battery Cost

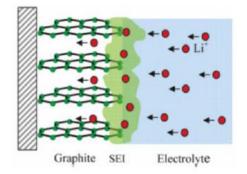


Research Roadmap for 2015 & Beyond

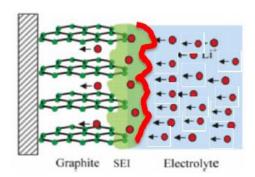
Current emphasis: The development of high voltage cathodes and electrolytes coupled with high capacity metal alloy anodes. Research to enable lithium metal-Li sulfur systems.

Energy Efficiency & Renewable Energy

New Focused Research Activity


 Combination of fast charge batteries and a network of high capacity chargers can minimize range anxiety and promote the market penetration of BEVs and increase total electric miles driven.

FY 2017 Study

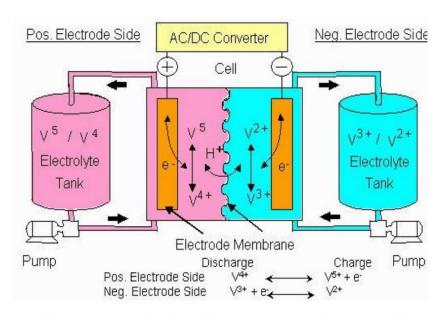

- Assess the knowledge base of the fast charging capability of automotive batteries
- Identify technical gaps for fast charging
- Identify R&D opportunities

Issues Identified regarding Fast Charging

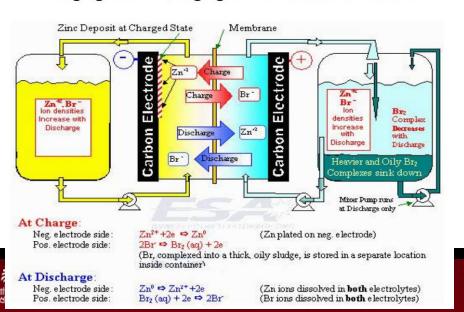
- Higher cost cells: (2X) compared to today's lithium-ion cells.
- Cycle Life & Durability of Cells
 - Lithium plating/deposition occurs on the anode above a threshold current density.
 - Cell temperature rise during charge

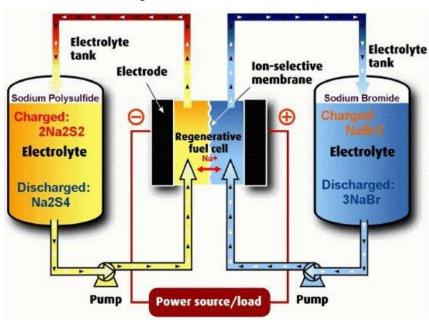
Plated lithium due to fastcharging

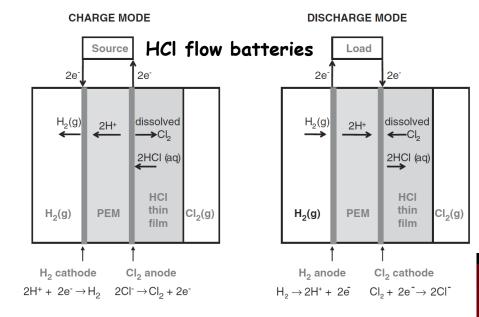
Energy Storage Technologies


- Electrochemical Energy Storage
 - -Battery
 - -Flow Battery
- Solar Thermal Energy Storage

Flow Batteries

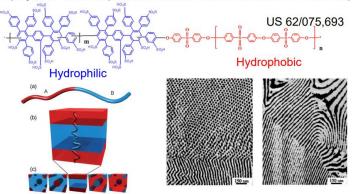



Vanadium Redox



Charging and discharging of Zinc Bromine batteries.

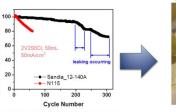
Polysulfide Bromide

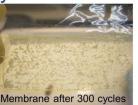


Membrane Development

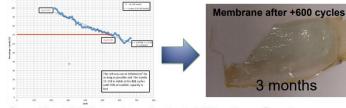
VRFB membranes

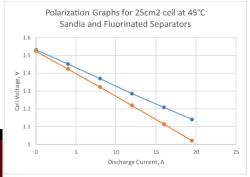
Versatile chemistry allow block co-polymer synthesis Block co-polymers allow for powerful control of water channel size and shape




In VRFB, require high transport selective membranes High H⁺ flux and vanadium barrier

VRFB Membranes - Durability




Gen5 has higher chemical stability than Gen4 With PNNL data, improved segment lengths and sent to VRFB company for testing

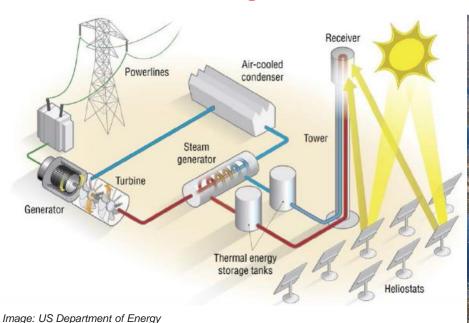
VRFB Membrane - Performance

Membrane	Efficiency, Round Trip	Efficiency, Coulombic	Efficiency, Voltaic
Sandia	82.2%	96.2%	85.4%
Fluorinated	72.3%	92.5%	78.2%

	Pmax, mW/cm²	Specific Resistance, Ωcm ²		
Sandia	1159	0.505		
Fluorinated	946	0.610		

Cycling Performance Comparison in 25-cm² cell at 45°C Sandia and Fluorinated Membranes WattJoule Electrolyte (2M Vanadium)

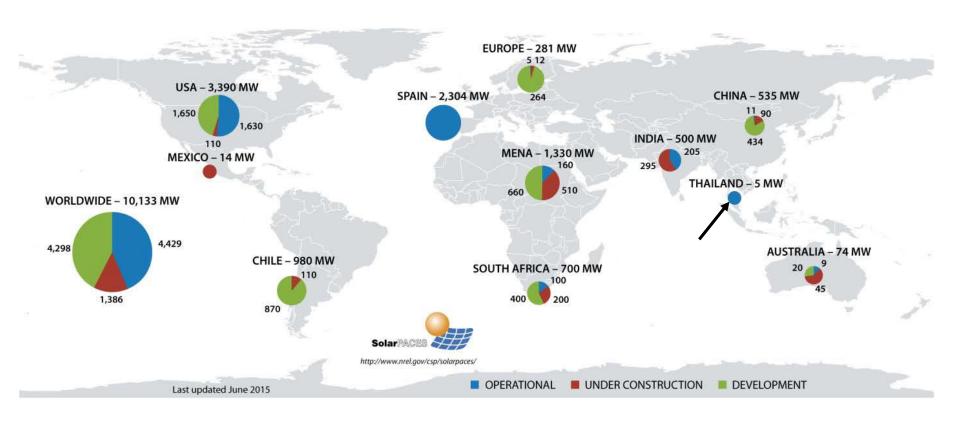
Data from WattJoule shows Gen5 has higher energy efficiency (+10%). High coulombic ef

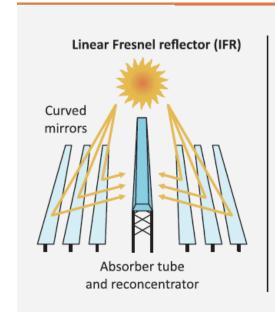

Energy Storage Technologies

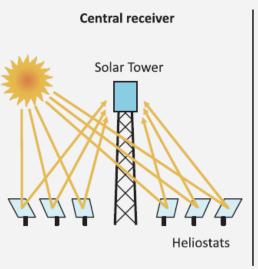
- Electrochemical Energy Storage
 - Battery
 - Hydrogen Fuel Cells
 - Flow Battery
- Solar Energy Storage
 - Concentrating Solar Power (CSP) Large scale

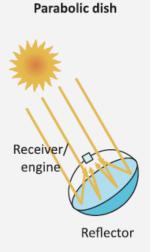
Concentrating solar power (CSP) plants

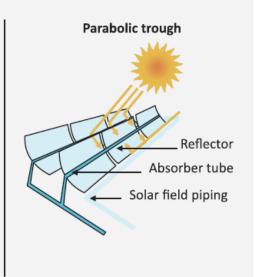
CSP plants use mirrors to focus sunlight and produce high-temperature thermal energy that can be stored inexpensively. This feature allows CSP to be a dispatchable electricity resource available whenever there is customer demand, including at times when the sun is not shining. CSP with thermal energy storage (or CSP-TES) thus provides considerable flexibility, increasing its own value to the grid and even enabling greater grid penetration of variable-generation technologies such as PV and wind.

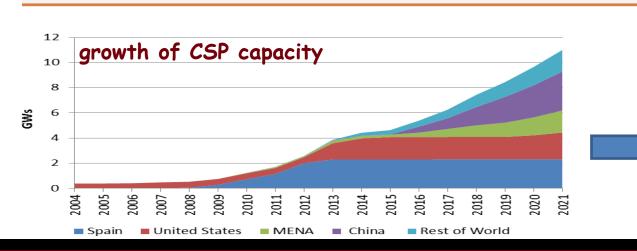

SunShot Initiative goal of 6 cents/kWh by 2020

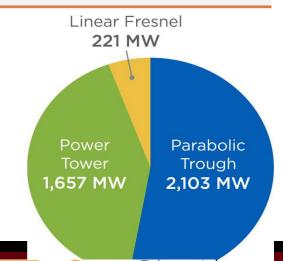

Cumulative CSP capacity by country and status (operational, under construction, development)








Types of CSP system: how they collect solar energy



U.S. Department of Energy

Collector Field

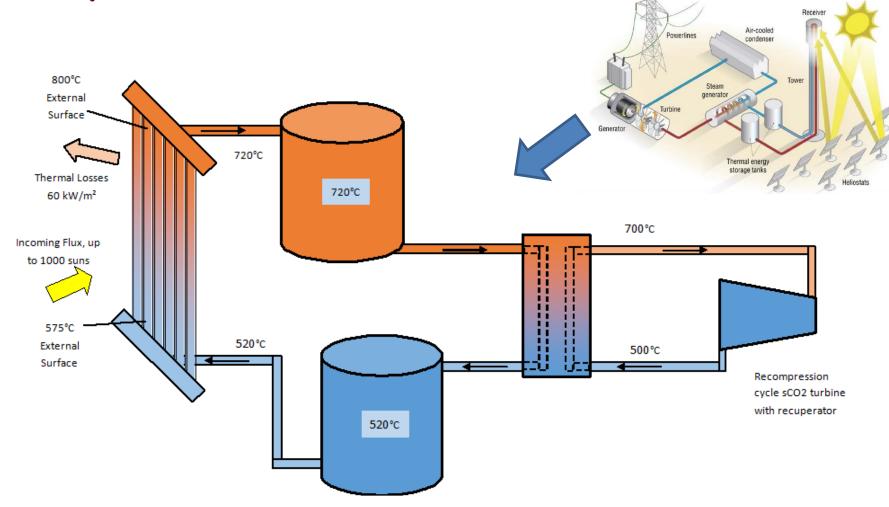
Cost <\$75/m²

Concentration ratio >50

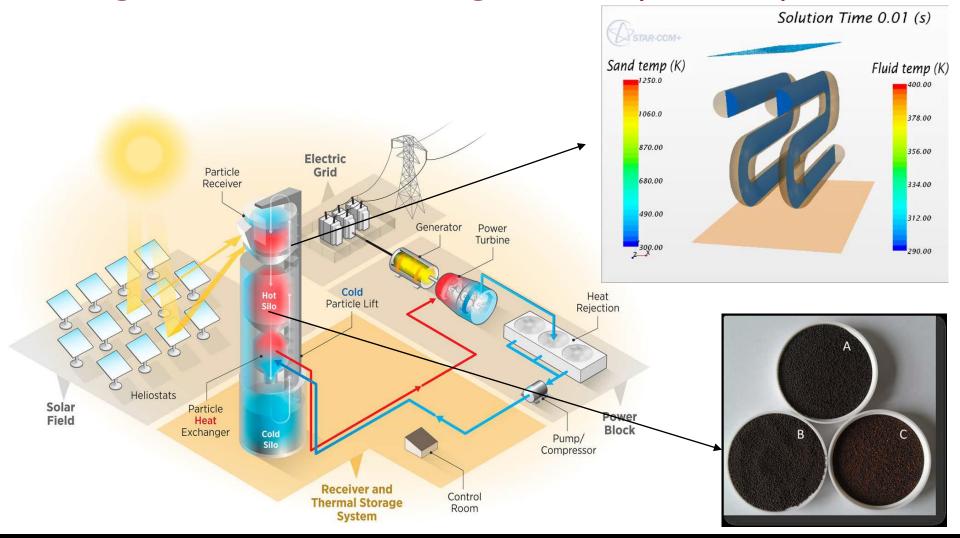
 Operable in 35-mph winds Optical error
 <3.0 mrad

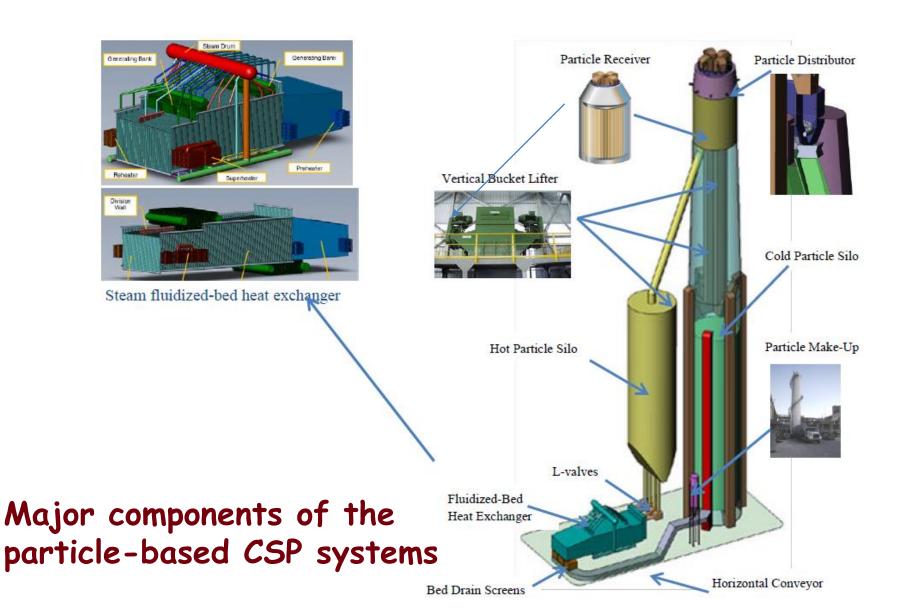
30-year lifetime

	Molten Salt	Falling Particle	Gas Phase
Receiver Cost < \$150/kWth Thermal Efficiency > 90% Exit Temperature > 720°C 10,000 cycle lifetime	 Similarities to prior demonstrations Allowance for corrosive attack required 	Most challenging to achieve high thermal efficiency	 High-pressure fatigue challenges Absorptivity control and thermal loss management
Material & Support Cost < \$1/kg Operable range from 250°C to 800°C	 Potentially chloride or carbonate salt blends; ideal material not determined Corrosion concerns dominate 	Suitable materials readily exist	Minimize pressure drop Corrosion risk retirement
Thermal Storage Cost < \$15/kW _{th} 99% energetic efficiency 95% exergetic efficiency	Direct or indirect storage may be superior	Particles likely double as efficient sensible thermal storage	 Indirect storage required Cost includes fluid to storage thermal exchange
HTF to sCO ₂ Heat Exchanger	Challenging to simultaneously handle corrosive attack and high-pressure working fluid	Possibly greatest challenge Cost and efficiency concerns dominate	Not applicable

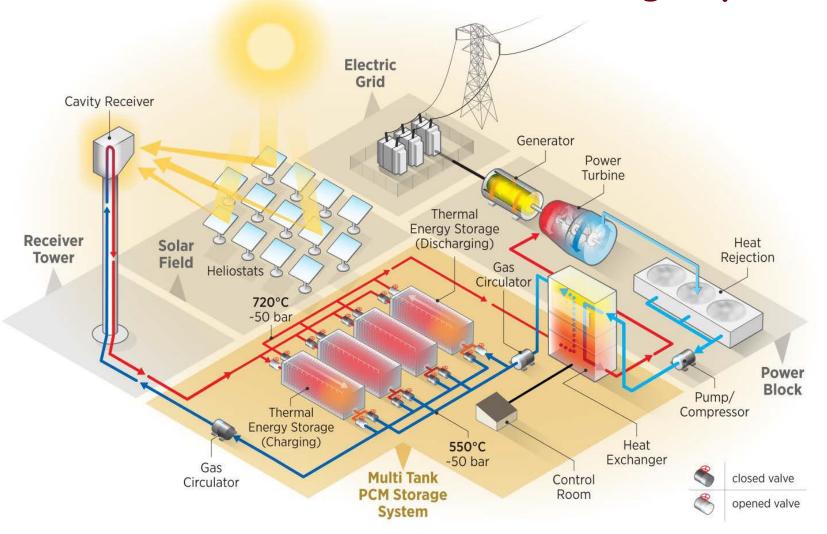

Supercritical CO₂ Brayton Cycle

- Net thermal-to-electric efficiency > 50%
- Power-cycle system cost < \$900/kW_e
- Dry-cooled heat sink at 40° C ambient
- Turbine inlet temperature ≥ 700°C



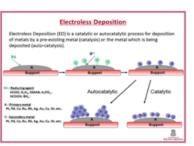


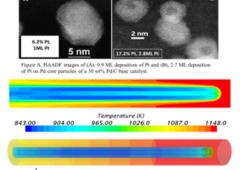
High temperature molten salt loop schematic with potential surface and fluid temperatures.


Falling-particle receiver system with integrated storage and heat exchange for a power cycle

Conceptual design of gas-phase receiver system with a modular PCM thermal storage system.

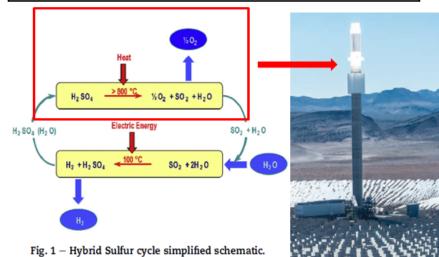
Contents


- About Hydrogen and Fuel-Cell Center
- Energy Storage Technologies in the US (US Department of Energy)
- Selected Research Activities at USC
- Summary


High temperature reactor catalyst material development for low cost and efficient solar driven sulfur-based processes

Claudio Corgnale / Greenway Energy

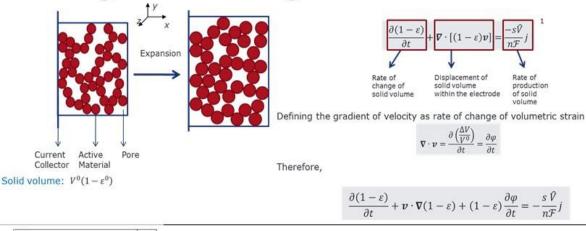
Technology Summary

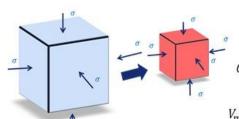

- Development and testing of a new catalytic material to decompose sulfuric acid. This will result in:
 - Limiting the catalyst deactivation by using very small particles of a high surface free energy core metal with a catalytically-active outer metal shell (60% less than the current catalyst).
 - Decreasing the material cost, with lower Pt content
 - 3. Increasing the nominal catalyst activity (30% higher than the current catalyst activity).
- Simulation, design, construction and testing of a lab scale decomposition reactor.
- Process modeling of the integrated solar driven H₂ production plant, with objective of demonstrating potential to:
 - 1. High solar to hydrogen efficiency (≥ 20%)
 - Low production cost (≤ 2 \$/kg)

Key Personnel

William Summers, Prabhu Ganesan (Greenway Energy); John Monnier, Sirivatch Shimpalee, John Regalbuto, John Weidner (University of South Carolina)

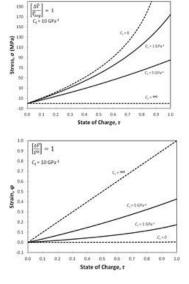
- High efficiency hydrogen production (driven by solar source), reaching solar to hydrogen η ≥ 20% (DOE target = 20%)
- Low cost hydrogen production (driven by solar source)
 ≤ 2 \$/kg_{H2} (DOE target = 2\$/kg_{H2})
- The proposed solar driven hydrogen production process, operating at T max ≈ 750-850 °C, can be integrated with other primary sources

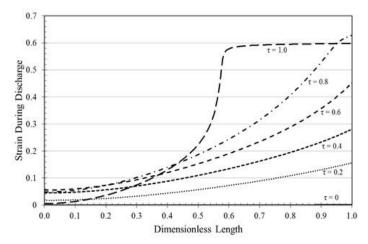

Novel sulfuric acid decomposition catalyst for low cost H₂ production cycles

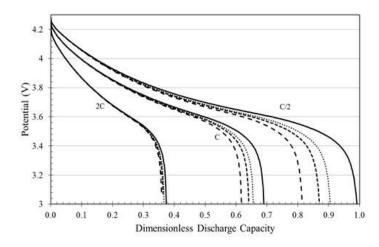


Battery Research at USC

Modeling Volume Change in Porous Electrodes

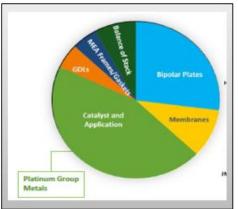

Taking into consideration rock mechanics, the compressibility of the bulk can be written:

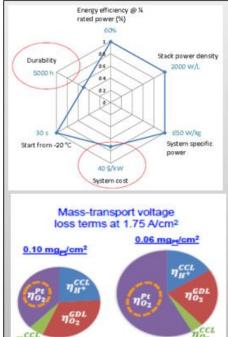

$$C_E = -\frac{1}{V_m} \frac{dV_m}{d\sigma}$$

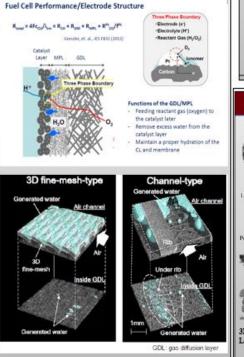

$$V_{\rm m} = V_{\rm m}^0 (1 + \varphi)$$

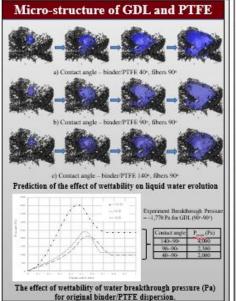
Electrode Strain:
$$\varphi = e^{(-\gamma \overline{\sigma})} - 1 + \left[\frac{\Delta \hat{V}}{\hat{V}_{avg}}\right] \tau$$

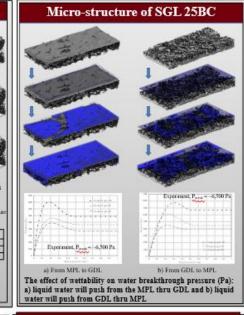
Casing Strain:
$$\varphi_{mq} = \varphi_c = C_C \sigma$$

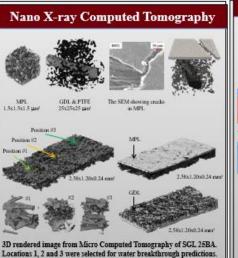


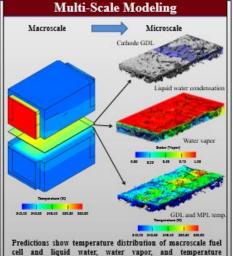

Transport Study in PEM Fuel Cells


Pongsarun Satjaritanun, Sirivatch Shimpalee and John W. Weidner









distributions of microscale GDL/MPL

Acknowledgement

