

Advanced CO₂ capture technology: Current development and Outlook

What is RTI International?

RTI is an independent, nonprofit institute that provides research, development, and technical services to government and commercial clients worldwide.

Our mission is to improve the human condition by turning knowledge into practice.

Global Presence – Workforce

THE RESEARCH TRIANGLE PARK

> HE UNIVERSITY NORTH CAROLINA CHAPEL HILL

NC STATE UNIVERSITY

Job Growth in RTP 1960 - 2011

- Three tier 1 research universities
- Largest research park and innovation ecosystem in the US
- A history and culture of effective collaboration
- An early adopter approach and culture
- Flexibility to encourage industry growth at convergence points
- A steady pipeline of talent
- Stable government policies and business climate

How to Build an Innovation Ecosystem

How do we create a culture of entrepreneurship that increases chances of long-term success? **Foster Effective Entrepreneurship Programs**

How can a government strengthen its policy tools to effectively foster growth in its innovation economy? **Creating Policy Infrastructure for Innovation**

How do we match our innovation assets with sectors primed for rapid and sustained growth in global markets? Identify Industry Sectors for Growth

How do we know what's working? How do we build on success? What should we invest in next? Assess Initiatives for Effectiveness & Impact

How do we better align university output with industry needs to produce market-ready technologies and job-ready graduates? Strengthen University-Industry Alignment

> How do Small & Medium Enterprises with limited resources find and adopt technologies and processes so that they can grow and thrive? **Drive Technology Adoption in SMEs**

How do we produce a skilled workforce in in the right numbers and with the right qualifications to propel high-value industries? **Develop an Innovation-Ready Workforce**

How do we convert R&D investments into commercially valuable new products, processes and services? Accelerate Technology Commercialization

Driving force: Economic Impact

Emission Data by Sources/Sectors

สัดส่วนการปล่อยก๊าช CO₂ จากการใช้พลังงาน รายสาขาเศรษฐกิจ

Focused sectors:

- Power production
- Cement and Iron production
- Petrochemicals

https://www.epa.gov/sites/production/files/2016-04/documents/us-ghg-inventory-2016-maintext.pdf

http://www.belfercenter.org/sites/default/files/le gacy/files/carbon-emissions-report-2015final.pdf

* เดือน ม.ค.

http://www.eppo.go.th/index.php/en/enenergystatistics/co2statistic?orders[publishUp]=publishUp&issearch=1

A Solution

Current solution for static point sources

- Electricity from alternative energy sources (wind, solar, hydro)
- Assist in balancing power plant load
- More flexibility in usage:
 - Chemical production
 - Fuel/additive
 - Energy Storage

The Power Plants

Pulverized-coal power plant process diagram (PCCC)

Pulverized-coal power plant process diagram (PCCC)

Energy penalty and impact on PCCC

The CO₂ Capture Process

CO₂ capture process – solvent

R&D Strategic Approach

Minimize reboiler heat duty

Breakdown of the Thermal Regeneration Energy Load

Solvent	С _р [J/g K]	∆h _{abs} [kJ/mol]	∆h _{vap} [kJ/moi]	X _{solv} [mol solv./ mol sol'n]	$\Delta \alpha$ [mol CO ₂ / mol solv.]	Reboiler Duty [GJ/tonne CO ₂]
MEA (30%)	3.8	85	40	0.11	0.34	3.22
Lower Energy Solvent System	↓	₽	₽	1		I

Cost Summary

http://www.nrg.com/generation/projects/petra-nova/

The Non-Aqueous Solvent

R&D through Technology Readiness Level (TRL)

RTI's Non-Aqueous solvent (NAS)

RTI evaluates wide range of low-cost, commercially-produced amines with the following characteristics:

- Low water solubility
- Low heat of absorption
- High working capacity
- Low regeneration temperature
- Low specific heat capacity
- Low heat of vaporization
- Low water solubility

Solvent Development – Current Optimization

Other operating parameters:

- Low rate of degraded products formation
- Reduce solvent emission and enhance amine recovery by wash section
- Regeneration under moderate pressure
- Optimize column configurations for NAS with holistic evaluation of impact on ICOE

Economic evaluation: NAS vs. base cases

	Base Case 1	Base Case 2	Case 1	Case 2	Case 3
Description	No Capture (DOE Case 11)	CO ₂ Capture (DOE Case 12) using 30Wt % MEA	RTI NAS @HP optimized	10% CAPEX increase due to EC	RTI NAS w/EC @HP optimized NOAK
Solvent		MEA	NAS	NAS	NAS
SRD (GJ/t-CO ₂)		3.6	1.9	1.9	1.9
Regenerator pressure (bar)		1.6	4.4	4.4	4.4
Coal flow rate (lb/hr)	409,528	565,820	495,610	495,610	495,610
Gross power output (kWe)	580,400	662,800	637,350	637,350	637,350
Aux. power req. (kWe)	30,410	112,850	87,350	87,350	87,350
Net power output (kWe)	549,990	549,950	550,000	550,000	550,000
Net plant HHV efficiency (%)	39.28%	28.43%	32.46%	32.46%	32.46%
Power plant cost (\$MM)	1,090	1,361	1,250	1,250	1,250
CO ₂ capture cost (\$MM)		506	243	267	267
CO ₂ compression cost (\$MM)		88	58	58	58
TPC (\$MM)	1,090	1,955	1551	1575	1575
TOC (\$MM)	1,349	2,409	1917	1946	1946
Total OPEX (\$MM)	199.1	297.6	254.8	255.9	255.9
COE, excl CO ₂ TS&M, mills/kWh	83.7	137.2	113.0	114.0	110.3
Cost of CO ₂ Capture (\$/t-CO ₂) ^a		56.45	36.72	37.83	33.59

Note: @HP = High Pressure; COE = Cost of Electricity; EC = emissions control; HHV = High Heating Value; NOAK = nth-of-the-kind;

TOC =Total Overnight Cost; TPC = Total Plant Cost; TS&M = Transport, Storage, and Monitoring.

The Sorbent

RTI's Solid Sorbent

Objective: Address the technical hurdles to developing a solid sorbent-based CO_2 capture process by transitioning a promising sorbent chemistry to a low-cost sorbent suitable for use in a fluidized-bed process

RTI explores a non-conventional technology for the next generation CO₂ capture. The solid sorbent demonstrates several attractive features:

- High reaction surface area
- Low heat of absorption
- High working capacity
- Low specific heat capacity
- Low heat of vaporization

RTI's Solid Sorbent for CO₂ capture

Updated Economic Analysis Summary

Breakdown of Main Contributors to Cost of CO₂ Captured

- Basis: DOE/NETL's Cost and Performance Baseline for Fossil Energy Plants – updated with lab and bench-scale test data
- Total cost of CO₂ captured ~ 45.0 \$/T-CO₂
- 43.3 \$/T-CO₂ achievable through use of unproven spent sorbent scrubbing strategy
- Represents > 25% reduction in cost of CO₂ capture, significant energy and capital savings compared to SOTA aqueous amine solvents

Main Factors impacting TEA

- Sorbent Cost
- CO₂ content in Regenerator
- Sorbent working capacity
- Regeneration temperature

Pathway to Cost Reductions

- Adsorber/Regenerator Design
- Heat recovery and integration
- Sorbent stability and cost

Norcem-RTI Project Overview

Objective:

Demonstrate the technical and economic feasibility of RTI's advanced, solid sorbent CO_2 capture process in an operating cement plant

Period of Performance:

• 5/1/2013 to 12/31/2016

Location:

- Norcem's cement plant in Brevik, Norway
 Project is structured in two phases:
 Phase I
- Evaluate sorbent performance using simulated and actual cement plant flue gas (testing in Norway)
- Prove economic viability of RTI's technology through detailed economic analyses
- Develop commercial design for cement application

Phase II

- Design, build, and test a pilot-scale system of RTI's technology at Norcem's Brevik cement plant
- Demonstrate long-term stability and effective CO₂ capture performance
- Update economic analyses with pilot test data

TRL 1-2 development and testing

RTI's Fully Automated, Packed-Bed Reactor System for multi-cycle CO₂ Capture-Regeneration Testing

Measurables:

- Dynamic CO₂ loading capacity
- Rate of CO₂ loading on sorbent (wt%/min)
- Thermal waves due to absorption or desorption
- Pressure drop across packed bed

RTI's Automated Sorbent Test Rig (ASTR) installed at Norcem's cement production plant in Brevik, Norway

Capabilities:

- Fully-automated operation, data analysis
- Multi-cycle, absorption-regeneration experiments
- Comprehensive parametric evaluation and sorbent screening
- Long-term effect of contaminants

Pilot Installation and Commissioning

Pilot System specifications:

- Flue gas throughput: ~ 600 to 1,600 SLPM
- Sorbent inventory: ~ 80 kg
- Power: ~ 60 to 90 kWe
- Cooling water: 250 to 650 kg/h
- Additional utilities: steam; compressed air; waster disposal

Thailand 4.0

Current development direction for energy sector

- Focus on reduce energy consumption
 - National Energy Conservation Plan (NECP)
 - Alternative Energy Development Plan (AEDP)
- Replace coal and oil with biofuels/low carbon content fuels

					ปรับปรุงข้อมูลล่าสุด วันที่ 31 พฤษภาคม 2560				
		Approved LoA		R	Registered		Issued CERs		
NO	Type of CDM Project	NO	Expected CERs	NO	Expected CERs	NO	CERs		
		(Project)	(tCO ₂ eq/y)	(Project)	(tCO ₂ eq/y)	(Project)	(tCO ₂ eq)		
	โครงการประเภททั่วไปและควบรวม (Single and Bundling Project)								
1	ผลิตพลังงานไฟฟ้าจากก๊าซชีวภาพ	63	3,214,248	49	2,167,277	28	6,284,448		
2	ผลิตพลังงานไฟฟ้าจากชีวมวล	39	2,130,414	26	1,158,150	6	692,860		
3	ผลิตพลังงานไฟฟ้าจากลมร้อนทิ้ง	9	532,009	4	253,020	0	0		
4	ผลิตพลังงานไฟฟ้าจากพลังงานแสงอาทิตย์	26	603,529	26	571,368	8	516,158		
5	ผลิตพลังงานไฟฟ้าจากพลังงานน้ำ	6	192,234	6	198,918	2	37,527		
6	ผลิตพลังงานไฟฟ้าจากพลังงานลม	4	409,968	3	326,010	0	0		
7	ผลิตพลังงานไฟฟ้าจากเชื้อเพลิง RDF	1	31,116	0	0	0	0		
8	ผลิตพลังงานความร้อนจากก๊าซชีวภาพ	19	1,006,015	10	500,046	4	349,289		
9	ผลิตพลังงานความร้อนจากชีวมวล	3	210,829	0	0	0	0		
10	ผลิดพลังงานไฟฟ้าและพลังงานความร้อนจากก๊าซชีวภาพ	29	2,200,478	17	1,154,748	9	2,956,876		
11	ผลิดพลังงานไฟฟ้าและพลังงานความร้อนจากชีวมวล	1	18,150	0	0	0	0		
12	ผลิดพลังงานไฟฟ้าและพลังงานความร้อนจากก๊าชธรรมชาติ	2	452,872	0	0	0	0		
13	เพิ่มประสิทธิภาพพลังงาน	2	29,875	1	394,874	1	1,121,677		
14	ผลิตปุ๋ยชีวภาพ	1	397,500	0	0	0	0		
15	ลดการปล่อยก๊าซในตรัสออกไซด์	1	168,887	1	142,402	1	300,151		
16	ลดการปล่อยก๊าซจากการขุดเจาะเชื้อเพลิง	2	45,093	1	26,163	1	10,581		
17	ลดการปล่อยก๊าซจากภาคขนส่ง	1	34,711	0	0	0	0		
18	ลดการปล่อยก๊าซมีเทนจากการย่อยสลายสารอินทรีย์ในน้ำเสีย	3	281,894	3	273,982	1	115,136		
รวม		212	11,959,822	147	7,166,958	61	12,384,703		

http://conference.tgo.or.th/download/tgo_or_th/Statistic/2017/May/CDM/sumIII_31_May_th.pdf

Recommendations:

- Incentivize static point source capture
- Initiate CO₂ capture from biofuels
- Promote federal subsidize to produce high value chemicals from CO₂
- Adopt deep sea saline storage

Gap analysis for Thailand 4.0

- Novel technology scale-up is difficult
 - Lack of expertise in transitioning between TRL
- Fully-Integrated development mechanism is not realized: Modelling, Material, and Process

THANK YOU

Contact Information:

Jak Tanthana, Ph.D. Research Chemical Engineer RTI International Durham, NC, USA jtanthana@rti.org

